Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.164
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 252-259, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501410

RESUMO

OBJECTIVE: To investigate the protective effect of PF-562271, a FAK inhibitor, against aging platelet-induced injury in human umbilical vein endothelial cells (HUVECs). METHODS: Cultured HUVECs were treated with vehicle, lipopolysaccharide (LPS), LPS+aging platelets, or LPS+aging platelets+PF-562271. The changes in protein expressions of FAK, pFAK and PECAM-1 in the treated cells were detected using Western blotting and immunofluorescence assay, and the level of reactive oxygen species (ROS) was detected with flow cytometry. The changes of barrier function of the cells were assessed with cell permeability test and transendothelial cell resistance test. RT-qPCR was used to analyze mRNA expressions of inflammatory factors, and pro-inflammatory cytokine levels in the culture supernatants was determined with enzyme-linked immunosorbent assay. Immunofluorescence assay was used to examine the effect of the ROS inhibitor vitamin C on PECAM-1 expression in the cells with different treatments. RESULTS: Treatment of HUVECs with LPS and aging platelets significantly increased cellular protein expressions of FAK, pFAK and PECAM-1, which were effectively lowered by addition of PF-562271 (P < 0.05). LPS and aged platelets obviously enhanced ROS production in the cells, which was inhibited by the addition of PF-562271 (P < 0.001). PF-562271 significantly alleviated the damage of endothelial cell barrier function of the cells caused by LPS and aging platelets (P < 0.01). The expressions of TNF-α, IL-6 and IL-8 in HUVECs increased significantly after exposure to LPS and aging platelets, and were obviously lowered after treatment with PF-562271 (P < 0.05). Treatment with vitamin C significantly decreased the expression of PECAM-1 protein in the cells (P < 0.01). CONCLUSION: The FAK inhibitor PF-562271 alleviates endothelial cell damage induced by LPS and aging platelets by lowering cellular oxidative stress levels and reducing inflammatory responses.


Assuntos
Envelhecimento , Indóis , Lipopolissacarídeos , Piridinas , Sulfonamidas , Humanos , Idoso , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338969

RESUMO

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Assuntos
Barreira Hematoencefálica , Epilepsia do Lobo Temporal , Epilepsia , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Estado Epiléptico , Animais , Humanos , Ratos , Barreira Hematoencefálica/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Pericitos/metabolismo , Pilocarpina/efeitos adversos , Ratos Sprague-Dawley , Estado Epiléptico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
3.
J Biosci Bioeng ; 137(1): 64-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973520

RESUMO

The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.


Assuntos
Acetaminofen , Células Endoteliais , Técnicas de Cocultura , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Hepatócitos , Fígado
4.
Cardiol Young ; 34(2): 308-313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37385726

RESUMO

BACKGROUND: Metabolic syndrome leading to type 2 diabetes mellitus and cardiovascular diseases is a chronic multifactorial syndrome, associated with low-grade inflammation status. In our study, we aimed at assessing the serum levels of follistatin (FST), pregnancy-associated plasma protein-A (PAPP-A), and platelet/endothelial cell adhesion molecule-1 (PECAM-1) in adolescent patients with metabolic syndrome. METHODS: This study was performed in 43 (19 males, 24 females) metabolic syndrome adolescents and 37 lean controls matched for age and sex. The serum levels of FST, PECAM-1, and PAPP-A were measured by using ELISA method. RESULTS: Serum FST and PAPP-A levels in metabolic syndrome were significantly higher than those of controls (p < 0.005 and p < 0.05). However, there was no difference in serum PECAM-1 levels between metabolic syndrome and control groups (p = 0.927). There was a significant positive correlation between serum FST and triglyceride (r = 0.252; p < 0.05), and PAPP-A and weight, (r = 0.252; p < 0.05) in metabolic syndrome groups. Follistatin was determined statistically significant in both univariate (p = 0,008) and multivariate (p = 0,011) logistic regression analysis. CONCLUSIONS: Our findings indicated a significant relationship between FST and PAPP-A levels and metabolic syndrome. These findings offer the possibility of using these markers in diagnosis of metabolic syndrome in adolescents as the prevention of the future complications.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Masculino , Feminino , Humanos , Adolescente , Síndrome Metabólica/complicações , Doenças Cardiovasculares/etiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Folistatina , Diabetes Mellitus Tipo 2/complicações , Biomarcadores , Fatores de Risco , Proteína Plasmática A Associada à Gravidez/análise , Proteína Plasmática A Associada à Gravidez/metabolismo , Fatores de Risco de Doenças Cardíacas
5.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069044

RESUMO

Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.


Assuntos
Indometacina , Úlcera Gástrica , Camundongos , Animais , Indometacina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Etanol/farmacologia , Interleucina-6/metabolismo , Dinoprostona/metabolismo , Azul Evans/metabolismo , Ocludina/metabolismo , Camundongos Endogâmicos ICR , Mucosa Gástrica/metabolismo
6.
Biochem Biophys Res Commun ; 682: 180-186, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37820453

RESUMO

Temsirolimus is a first-generation mTOR inhibitor commonly used in the clinical treatment of cancers that is associated with lung injury. However, the mechanism underlying this adverse effect remains elusive. Endothelial barrier dysfunction plays a pivotal role in the infiltration of neutrophils into the pulmonary alveoli, which eventually induces lung injury. The present study demonstrates that temsirolimus induces the aberrant expression of adhesion molecules in endothelial cells, leading to enhanced neutrophil infiltration and subsequent lung injury. Results of a mouse model revealed that temsirolimus disrupted capillary-alveolar barrier function and facilitated neutrophil transmigration across the endothelium within the alveolar space. Consistent with our in vivo observations, temsirolimus impaired intercellular barrier function within monolayers of human lung endothelial cells, resulting in increased neutrophil infiltration. Furthermore, we demonstrated that temsirolimus-induced neutrophil transendothelial migration was mediated by platelet endothelial cell adhesion molecule-1 (PECAM-1) in both in vitro and in vivo experiments. Collectively, these findings highlight that temsirolimus induces endothelial barrier dysfunction via PECAM-1-dependent pathway both in vitro and in vivo, ultimately leading to neutrophil infiltration and subsequent pulmonary injury.


Assuntos
Lesão Pulmonar , Animais , Camundongos , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Migração Transendotelial e Transepitelial , Movimento Celular , Endotélio Vascular/metabolismo
7.
Am J Physiol Cell Physiol ; 325(4): C951-C971, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642239

RESUMO

Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Masculino , Barreira Hematoencefálica/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Células Endoteliais/metabolismo , Claudina-5/metabolismo , AVC Isquêmico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia/metabolismo , Hipóxia/metabolismo , Glucose/metabolismo
8.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643615

RESUMO

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Assuntos
Migração Transendotelial e Transepitelial , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Adesão Celular , Movimento Celular , Endotélio Vascular , Mecanotransdução Celular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Cell Commun Signal ; 21(1): 203, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580771

RESUMO

BACKGROUND: Diabetes mellitus (DM) is considered to be a risk factor in carcinogenesis and progression, although the biological mechanisms are not well understood. Here we demonstrate that platelet-endothelial cell adhesion molecule 1 (PECAM-1) internalization drives ß-catenin-mediated endothelial-mesenchymal transition (EndMT) to link DM to cancer. METHODS: The tumor microenvironment (TME) was investigated for differences between colon cancer with and without DM by mRNA-microarray analysis. The effect of DM on colon cancer was determined in clinical patients and animal models. Furthermore, EndMT, PECAM-1 and Akt/GSK-3ß/ß-catenin signaling were analyzed under high glucose (HG) and human colon cancer cell (HCCC) supernatant (SN) or coculture conditions by western and immunofluorescence tests. RESULTS: DM promoted the progression and EndMT occurrence of colon cancer (CC). Regarding the mechanism, DM induced PECAM-1 defection from the cytomembrane, internalization and subsequent accumulation around the cell nucleus in endothelial cells, which promoted ß-catenin entry into the nucleus, leading to EndMT occurrence in CC with DM. Additionally, Akt/GSK-3ß signaling was enhanced to inhibit the degradation of ß-catenin, which regulates the process of EndMT. CONCLUSIONS: PECAM-1 defects and/or internalization are key events for ß-catenin-mediated EndMT, which is significantly boosted by enhanced Akt/GSK-3ß signaling in the DM-associated TME. This contributes to the mechanism by which DM promotes the carcinogenesis and progression of CC. Video Abstract.


Assuntos
Neoplasias do Colo , Diabetes Mellitus , Molécula-1 de Adesão Celular Endotelial a Plaquetas , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Neoplasias do Colo/metabolismo , Células Endoteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral
10.
Elife ; 122023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37549051

RESUMO

Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed ß2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.


Assuntos
Neutrófilos , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Animais , Camundongos , Antígenos CD18/metabolismo , Adesão Celular/fisiologia , Inflamação/metabolismo , Integrinas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteômica , Transdução de Sinais , Movimento Celular
11.
Br J Haematol ; 202(4): 840-855, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365680

RESUMO

Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proliferação de Células , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo
12.
Microbiol Spectr ; 11(3): e0476922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199607

RESUMO

Porphyromonas gingivalis is an important periodontal pathogen that can cause vascular injury and invade local tissues through the blood circulation, and its ability to evade leukocyte killing is critical to its distal colonization and survival. Transendothelial migration (TEM) is a series of that enable leukocytes to squeeze through endothelial barriers and migrate into local tissues to perform immune functions. Several studies have shown that P. gingivalis-mediated endothelial damage initiates a series of proinflammatory signals that promote leukocyte adhesion. However, whether P. gingivalis is involved in TEM and thus influences immune cell recruitment remains unknown. In our study, we found that P. gingivalis gingipains could increase vascular permeability and promote Escherichia coli penetration by downregulating platelet/endothelial cell adhesion molecule 1 (PECAM-1) expression in vitro. Furthermore, we demonstrated that although P. gingivalis infection promoted monocyte adhesion, the TEM capacity of monocytes was substantially impaired, which might be due to the reduced CD99 and CD99L2 expression on gingipain-stimulated endothelial cells and leukocytes. Mechanistically, gingipains mediate CD99 and CD99L2 downregulation, possibly through the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, our in vivo model confirmed the role of P. gingivalis in promoting vascular permeability and bacterial colonization in the liver, kidney, spleen, and lung and in downregulating PECAM-1, CD99, and CD99L2 expression in endothelial cells and leukocytes. IMPORTANCE P. gingivalis is associated with a variety of systemic diseases and colonizes in distal locations in the body. Here, we found that P. gingivalis gingipains degrade PECAM-1 to promote bacterial penetration while simultaneously reducing leukocyte TEM capacity. A similar phenomenon was also observed in a mouse model. These findings established P. gingivalis gingipains as the key virulence factor in modulating the permeability of the vascular barrier and TEM processes, which may provide a new rationale for the distal colonization of P. gingivalis and its associated systemic diseases.


Assuntos
Porphyromonas gingivalis , Migração Transendotelial e Transepitelial , Camundongos , Animais , Cisteína Endopeptidases Gingipaínas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adesinas Bacterianas/metabolismo
13.
Commun Biol ; 6(1): 358, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005489

RESUMO

Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.


Assuntos
Células Endoteliais , Canais Iônicos , Camundongos , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Células Endoteliais/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Mecanotransdução Celular , Junções Intercelulares/metabolismo , Endotélio/metabolismo
14.
J Cereb Blood Flow Metab ; 43(7): 1027-1041, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051650

RESUMO

Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and ß-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial
15.
Med Mol Morphol ; 56(2): 128-137, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36622466

RESUMO

Gemcitabine (GEM) is an anticancer drug inhibiting DNA synthesis. Glomerular thrombotic microangiopathy (TMA) has been reported as an adverse effect. However, the precise mechanism of GEM-induced endothelial injury remains unknown. Cultured human umbilical vein endothelial cells (HUVECs) in the confluent phase were exposed to GEM (5-100 µM) for 48 h and evaluated cell viability and morphology, lectin binding concerning sialic acid of endothelial glycocalyx (GCX), and immunofluorescent staining of platelet-endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor receptor 2 (VEGFR2). The mRNA expression of α2,6-sialyltransferase (ST6Gal1), sialidase (neuraminidase-1: NEU-1), and interleukin (IL)-1ß and IL-6 was also evaluated. GEM exposure at 5 µM induced cellular shrinkage and intercellular dissociation, accompanied by slight attenuation of PECAM and VEGFR2 immunostaining, although cell viability was still preserved. At this concentration, lectin binding showed a reduction of terminal sialic acids in endothelial GCX, probably associated with reduced ST6Gal1 mRNA expression. IL-1ß and IL-6 mRNA expression was significantly increased after GEM exposure. GEM reduced terminal sialic acids in endothelial GCX through mRNA suppression of ST6Gal1 and induced inflammatory cytokine production in HUVECs. This phenomenon could be associated with the mechanism of GEM-induced TMA.


Assuntos
Gencitabina , Glicocálix , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ácidos Siálicos/metabolismo , Lectinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Eur J Sport Sci ; 23(4): 561-570, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35195045

RESUMO

Although evidence demonstrates the fundamental role of shear stress in vascular health, predominantly through the release of nitric oxide (NO), the mechanisms by which endothelial cells (EC)s sense and transduce shear are poorly understood. In cultured ECs tyrosine phosphorylation of PECAM-1 has been shown to activate eNOS in response to shear stress. However, in the human skeletal muscle microcirculation PECAM-1 was not activated in response to exercise or passive leg movement. Given this contradiction, this study aimed to assess the effect of exercise on conduit artery PECAM-1 and eNOS activation in humans. Eleven males were randomised to two groups; 30 min of handgrip exercise (n = 6), or a time-control group (n = 5). Protein content of eNOS and PECAM-1, alongside eNOS Ser1177 and PECAM-1 Tyr713 phosphorylation were assessed in ECs obtained from the radial artery pre- and post-intervention. Handgrip exercise resulted in a 5-fold increase in mean shear rate in the exercise group, with no change in the control group (group*time, P < 0.001). There was a 54% increase in eNOS Ser1177 phosphorylation in the exercise group, when compared to control group (group*time, P = 0.016), but no change was reported in PECAM-1 Tyr713 phosphorylation in either group (group*time, P > 0.05). eNOS and PECAM-1 protein content were unchanged (group*time, P > 0.05). Our data show that exercise-induced elevations in conduit artery shear rate increase eNOS Ser1177 phosphorylation but not PECAM-1 Tyr713 phosphorylation. This suggests PECAM-1 phosphorylation may not be involved in the vascular response to acute but prolonged elevations in exercise-induced shear rate in conduit arteries of healthy, active men.


Assuntos
Células Endoteliais , Força da Mão , Humanos , Masculino , Artérias , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Estresse Mecânico
17.
Vascular ; 31(1): 152-162, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34816786

RESUMO

OBJECTIVES: Based on the angiogenetic, transcriptional profile of non-diseased and arteriosclerotic vessels, we aim to identify the leucocytic markers as a potential, minimal invasive tool supporting diagnosis of vascular pathology. METHODS: Transcriptional profiling was performed with Angiogenesis RT2 Profiler PCR (Polymerase Chain Reaction) array on three non-pathological and three arteriosclerotic vessels, followed by immunohistochemical staining. Based on these screening results, selected transcripts were employed for qPCR with specific primers and investigated on the blood RNA (RiboNucleic Acid) obtained from nine healthy controls and 29 patients with cardiovascular disorders. Thereafter, expression of these transcripts was investigated in vitro in human monocytes under calcification-mimicking conditions. RESULTS AND CONCLUSIONS: Transcriptional profiling on the vessels revealed that out of 84 targets investigated two were up-regulated more than 100-fold, 18 more than 30 and 15 more than 10, while the most noticeable down-regulation was observed by ephrin-A3 and platelet-derived growth factor alpha (PDGFA) genes. Based on the vessel results, investigations of the selected blood transcripts revealed that thrombospondin 1 (THBS1), thrombospondin 3 (THBS3), transforming growth factor, beta receptor 1 (TGFBR1), platelet-derived growth factor alpha, plasminogen activator, urokinase (PLAU) and platelet/endothelial cell adhesion molecule 1 (PECAM-1) were significantly elevated in cardiovascular blood as compared to corresponding controls. Induction of calcification-related conditions in vitro to human THP-1 monocytes led to noticeable modulation of these transcripts. Taken together, these data demonstrate that leucocytic THBS1, THBS3, TGFBR1, platelet-derived growth factor alpha, PLAU and PECAM-1 have a correlation with cardiovascular disorders and could be used as a supportive tool predicting development of this pathological condition.


Assuntos
Fator de Crescimento Derivado de Plaquetas , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Regulação para Baixo
18.
Sci Rep ; 12(1): 22288, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566295

RESUMO

Cluster of differentiation 31 (CD31), phalloidin and alpha smooth muscle actin (α-SMA) have been widely applied to label the cerebral blood vessels in the past years. Although CD31 is mainly used as endothelial marker in determining the cerebral capillaries, it seems likely that its labeling efficiency is closely correlated with the antibodies from the polyclonal or monoclonal one, as well as the conditions of blood vessels. In order to test this phenomenon, we compared the labeling characteristics of goat polyclonal anti-CD31 (gP-CD31) and mouse monoclonal anti-CD31 (mM-CD31) with those of phalloidin and α-SMA on the rat brain in health and ischemia/reperfusion (I/R) with the middle cerebral artery occlusion. By multiple immunofluorescence staining, it was found that gP-CD31 labeling expressed extensively on the cerebral capillaries forming the vascular networks on the normal and ischemic regions, but mM-CD31 labeling mainly presented on the capillaries in the ischemic region. In contrast to the vascular labeling with gP-CD31, phalloidin and α-SMA were mainly expressed on the wall of cortical penetrating arteries, and less on that of capillaries. By three-dimensional reconstruction analysis, it was clearly shown that gP-CD31 labeling was mainly located on the lumen side of vascular wall and was surrounded by phalloidin labeling and α-SMA labeling. These results indicate that gP-CD31 is more sensitive than mM-CD31 for labeling the cerebral vasculature, and is highly compatible with phalloidin and α-SMA for evaluating the cerebral vascular networks under the physiological and pathological conditions.


Assuntos
Actinas , Isquemia Encefálica , Artérias Cerebrais , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Animais , Camundongos , Ratos , Actinas/metabolismo , Faloidina/metabolismo , Isquemia Encefálica/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Artérias Cerebrais/metabolismo
19.
Front Immunol ; 13: 969336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248911

RESUMO

Maternal neutrophils cells are players in gestational tolerance and fetus delivery. Nonetheless, their actions in each phase of the pregnancy are unknown. We here investigated the role of maternal neutrophil depletion before the blastocyst implantation phase and outcomes in the pregnancy index, placenta, and fetus development. Neutrophils were pharmacologically depleted by i.p. injection of anti-Gr1 (anti-neutrophils; 200 µg) 24 hours after plug visualization in allogeneic-mated C57BL/6/BALB/c mice. Depletion of peripheral neutrophils lasted until 48 hours after anti-Gr1 injection (gestational day 1.5-3.5). On gestational day 5.5, neutrophil depletion impaired the blastocyst implantation, as 50% of pregnant mice presented reduced implantation sites. On gestational day 18.5, neutrophil depletion reduced the pregnancy rate and index, altered the placenta disposition in the uterine horns, and modified the structure of the placenta, detected by reduced junctional zone, associated with decreased numbers of giant trophoblast cells, spongiotrophoblast. Reduced number of placenta cells labeled for vascular endothelial growth factor (VEGF), platelet-endothelial cell adhesion molecule (PECAM-1), and intercellular cell adhesion molecule (ICAM-1), important markers of angiogenesis and adhesiveness, were detected in neutrophil depleted mice. Furthermore, neutrophil depletion promoted a higher frequency of monocytes, natural killers, and T regulatory cells, and lower frequency of cytotoxic T cells in the blood, and abnormal development of offspring. Associated data obtained herein highlight the pivotal role of neutrophils actions in the early stages of pregnancy, and address further investigations on the imbricating signaling evoked by neutrophils in the trophoblastic interaction with uterine epithelium.


Assuntos
Molécula 1 de Adesão Intercelular , Fator A de Crescimento do Endotélio Vascular , Animais , Implantação do Embrião , Feminino , Feto , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
20.
Nutrients ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36235732

RESUMO

In an in vivo rat model of human exposure to cadmium (Cd; 5 and 50 mg/L, 6 months), whether the supplementation with zinc (Zn; 30 and 60 mg/L, increasing its daily intake by 79% and 151%, respectively) protects against the unfavourable impact of this xenobiotic on the vascular tissue of the abdominal aorta was investigated. The treatment with Cd led to oxidative stress and increased the concentrations of pro-inflammatory interleukin 1ß (IL-1ß), total cholesterol (TC), triglycerides (TG), and endothelial nitric oxide synthase (eNOS) and decreased the concentration of anti-inflammatory interleukin 10 (IL-10) in the vascular tissue. Cd decreased the expression of intercellular adhesion molecule-1 (ICAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), and L-selectin on the endothelial cells. The administration of Zn prevented most of the Cd-induced alterations or at least weakened them (except for the expression of adhesive molecules). In conclusion, Zn supplementation may protect from the toxic impact of Cd on the blood vessels and thus exert a beneficial influence on the cardiovascular system. The increase in the intake of Zn by 79% may be sufficient to provide this protection and the effect is related to the antioxidative, anti-inflammatory, and antiatherogenic properties of this essential element.


Assuntos
Aorta Abdominal , Cádmio , Zinco , Animais , Aorta Abdominal/efeitos dos fármacos , Cádmio/toxicidade , Colesterol/metabolismo , Suplementos Nutricionais , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Selectina L/metabolismo , Modelos Teóricos , Óxido Nítrico Sintase Tipo III/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Xenobióticos/toxicidade , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...